
Why we chose ZK when creating Sciformation ELN

Introduction

Since 2006, I have worked on so-called Electronic Laboratory Notebook (ELN) software, 
which is used by scientists to document experimental setups, procedures, observations 
and results. I am myself a chemist, i.e. an autodidact in the field of programming. My first 
ELN software, open enventory (OE)1, was written in PHP and Javascript, being part of my 
PhD thesis2. It is open source software.
The development took place between
2006 and 2010, when asynchronous
communication and single-page web applications came up. To deliver a user experience 
comparable to desktop applications, I developed a custom basis for CRUD applications 
where the data is loaded asynchronously through an invisible iframe. 

OE is still quite popular, but certain design decisions limited the range of potential users to 
university research groups and small companies, while larger companies or research 
institutes missed a fine-granular permission management and customization options, for 
instance to support a broader range of science disciplines. The latter is particularly difficult 
and important, as the future development of science is very difficult to predict. 

To overcome the intrinsic limitations of OE, we wanted to develop a new software system 
together with the renowned Max-Planck-Institut für Kohlenforschung3. OE's data design 
and many good features served as blueprint for the new development, which we called 
Sciformation ELN (SE)4. We wanted to design a clean basis while being able to quickly 
make adjustments not foreseeable at the
project start, in close collaboration with
the users. We wanted to offer an
extended functionality and – more important – flexibility to quickly add form templates for 
new types of experiments, without any changes to the core software components. 

In an early project phase, we (unsystematically) evaluated multiple cross-browser GUI 
frameworks for Java, like ZK5 or GWT6. Our main goals were

• to avoid browser-specific issues and 

• to reduce the required workload by using pre-built widgets. 

Requirements and evaluation

In our evaluation, the license of the respective framework, the existing user basis and the 
documentation were the first points to check. Packages with a license containing a strong 
copyleft like GPL or AGPL7 were not an option, as we wanted to create commercial 
software, so that the development costs could be financed by license sales. A broad user 
basis was important to reduce the risk of a framework to be abandoned, we wanted to 
ensure that the software component will be continuously maintained in future years and 
decades.

To achieve a desktop-like user-experience, the immediate user interaction was a very 
important point, which we could pre-evaluate using demo installations on the web. JSF 
and many derivatives8 were quickly excluded from further evaluation at this point, as they 
seemed to require full page reloads for many operations. This may have changed 
meanwhile, but waiting was not an option for our project. 

Why we chose ZK 1 / 5 Dr. Felix Rudolphi



Once a promising candidate was found, the installation of the framework was the following 
step. GWT was our first serious candidate, probably at version 2.2.0. It was rather 
complicated to install and took us days to create a very simple GUI, we were soon 
frustrated. Furthermore, integrating any existing Javascript code fragments seemed very 
complicated to us. 

Therefore, we were close to creating a custom GUI basis again, when my colleague came 
across ZK. It was easily installed and worked out-of-the-box, offering a large set of 
well-tested widgets, good page layout help for different screen sizes (“flex”) and a fast user
experience. The documentation and demo site were supreme, both in quality and extent, 
offering different learning approaches for the technology. The integration of legacy code 
worked well, the technical design seemed very clean and logical. We stopped the 
evaluation at that point, as we were fully convinced. 

What we like about ZK

At this point of decision, we were not aware of other striking features of ZK, which we 
step-by-step started to take benefit from:

• the ZUL form system offers the flexibility required to quickly design and adapt 
forms, the Include component allows to nest and reuse components.

• In combination with the databinding system (of ZK 5), we achieved the current 
status, where new sub-forms can be realized without any modification of the 
backing controller component. As map entries can be bound to GUI properties, we 
are able to save custom properties as name-value-pairs to the database, offering 
almost unlimited flexibility to design future document templates without any 
modification of compiled code. Other frameworks like JSF do offer databinding as 
well, but are much slower than ZK and do not offer an acceptable user-experience. 

• We could easily develop custom macro components to edit molecular structures 
(Scheme 1) or to manage analytical data (Scheme 2), special functionality required 
for scientists. 

a) Integrating a molecular editor9 b) Depicting chemical structure formulas

Scheme 1: Chemistry-specific macro components

Why we chose ZK 2 / 5 Dr. Felix Rudolphi



a) Preview image for uploaded raw data b) SVG-based annotation tool

Scheme 2: A custom macro component to handle analytical data

• Moreover it was simple to create custom derivatives of the included widgets. As 
an example, we developed a toolbar button which displays either an icon, the text or
both, depending on the user's preference, with only a few lines of code. 

• The localization was convenient, although we are convinced that other frameworks
will offer similar functionality.

• For coding convenience and efficiency, we appreciated the ThreadLocal references 
to the session variable (Sessions.getCurrent()) ZK offers, as repeatedly passing this
variable from one function to another is sometimes undesirable. 

• ZK can be fine-tuned using configuration files, but they are not required as the 
developers have chosen reasonable factory defaults.

Scheme 3 (a-d) show some examples of how we could benefit from ZK's flexibility: 

a) Template selection for an experiment b) Template for chemical experiments

Why we chose ZK 3 / 5 Dr. Felix Rudolphi



c) Stepwise documentation of a process 
with customizable forms for each step

d) client-specific form template with 
validation, integration of legacy components
like Wyzz10

Scheme 3: ZK offers the ultimate flexibility we need in science

Only for a few minor detail questions, we needed to find workarounds:

• Passing parameters to included pages, and reliable, efficient access thereof (arg, 
param, requestScope,...) was sometimes trial-and-error.

• Databinding with a single binder in the enclosing page and dynamically loaded 
included ZUL documents, which were also to be bound, was a bit tricky.

• Dynamically generating ZUL elements that integrate into annotation-based 
databinding was beyond any documented case and required detail understanding of
the AnnotateDatabinder component. However, due to the published source code of 
ZK, we could find a good solution for this requirement. 

Due to ZK's open source code, we could follow the operations in the debugger and find 
elegant solutions in many cases. Moreover, the ZK support team and the community 
provided valuable help and good inspiration for us in many cases. 

Summary

Scientific data is very heterogeneous, the future requirements are unpredictable. ZK offers 
the flexibility we need to manage this kind of data in an efficient way. Only two developers 
– with only a very limited budget – were able to create an outstanding ELN system, 
outperforming competitors with legions of developers. This success would not have been 
possible with the conventional design and development model or any other framework. If I 
go through the list of Java web application frameworks11, try out demo sites and look at 
technical documentation from today's perspective, I am still convinced that using ZK was 
the best option we could choose. A substantial part of our success was only possible as 
we could take benefit of ZK's great functionality, user-experience and documentation, while
relying on ZK's excellent stability and compatiblity. 

January 2014

Felix Rudolphi, CEO and founder, Sciformation Consulting GmbH

Why we chose ZK 4 / 5 Dr. Felix Rudolphi



1 open enventory, AGPL license, http://open-enventory.eu
2 http://kluedo.ub.uni-kl.de/files/2262/arbeit_draft.v.18_duplex_b.pdf
3 http://www.kofo.mpg.de
4 http://sciformation.com/sciformation_eln.html?lang=en
5 http://zkoss.org
6 http://www.gwtproject.org
7 http://www.gnu.org/licenses/licenses.html
8 a) https://javaserverfaces.java.net/

b) see https://en.wikipedia.org/wiki/JavaServer_Faces#Ajax-enabled_components_and_frameworks for 
references to selected derivatives and extensions

9 http://sciformation.com/vectormol.html?lang=en
10 http://www.wyzz.info
11 http://en.wikipedia.org/wiki/Comparison_of_web_application_frameworks#Java_2

Why we chose ZK 5 / 5 Dr. Felix Rudolphi


	Why we chose ZK when creating Sciformation ELN
	Introduction
	Requirements and evaluation
	What we like about ZK
	Summary


